Targeting FPGA DSP Slices for a Large Integer Multiplier for Integer Based FHE
نویسندگان
چکیده
Homomorphic encryption offers potential for secure cloud computing. However due to the complexity of homomorphic encryption schemes, performance of implemented schemes to date have been unpractical. This work investigates the use of hardware, specifically Field Programmable Gate Array (FPGA) technology, for implementing the building blocks involved in somewhat and fully homomorphic encryption schemes in order to assess the practicality of such schemes. We concentrate on the selection of a suitable multiplication algorithm and hardware architecture for large integer multiplication, one of the main bottlenecks in many homomorphic encryption schemes. We focus on the encryption step of an integer-based fully homomorphic encryption (FHE) scheme. We target the DSP48E1 slices available on Xilinx Virtex 7 FPGAs to ascertain whether the large integer multiplier within the encryption step of a FHE scheme could fit on a single FPGA device. We find that, for toy size parameters for the FHE encryption step, the large integer multiplier fits comfortably within the DSP48E1 slices, greatly improving the practicality of the encryption step compared to a software implementation. As multiplication is an important operation in other FHE schemes, a hardware implementation using this multiplier could also be used to improve performance of these schemes.
منابع مشابه
High-Speed Fully Homomorphic Encryption Over the Integers
A fully homomorphic encryption (FHE) scheme is envisioned as a key cryptographic tool in building a secure and reliable cloud computing environment, as it allows arbitrary evaluation of a ciphertext without revealing the plaintext. However, existing FHE implementations remain impractical due to very high time and resource costs. To the authors’ knowledge, this paper presents the first hardware ...
متن کاملAn Efficient LUT Design on FPGA for Memory-Based Multiplication
An efficient Lookup Table (LUT) design for memory-based multiplier is proposed. This multiplier can be preferred in DSP computation where one of the inputs, which is filter coefficient to the multiplier, is fixed. In this design, all possible product terms of input multiplicand with the fixed coefficient are stored directly in memory. In contrast to an earlier proposition Odd Multiple Storage ...
متن کاملEfficient Hardware Design for Computing Pairings Using Few FPGA In-built DSPs
This paper is devoted to the design of a 258-bit multiplier for computing pairings over Barreto-Naehrig (BN) curves at 128-bit security level. The proposed design is optimized for Xilinx field programmable gate array (FPGA). Each 258-bit integer is represented as a polynomial with five, 65 bit signed integer, coefficients. Exploiting this splitting we designed a pipelined 65-bit multiplier base...
متن کاملAccelerating Fully Homomorphic Encryption over the Integers with Super-size Hardware Multiplier and Modular Reduction
A fully homomorphic encryption (FHE) scheme is envisioned as being a key cryptographic tool in building a secure and reliable cloud computing environment, as it allows arbitrarily evaluation of a ciphertext without revealing the plaintext. However, existing FHE implementations remain impractical due to their very high time and resource costs. Of the proposed schemes that can perform FHE to date...
متن کاملEfficient Multiplier for pairings over Barreto-Naehrig Curves on Virtex-6 FPGA
This paper is devoted to the design of a 258bit multiplier for computing pairings over Barreto-Naehrig (BN) curves at 128-bit security level. The proposed design is optimized for Xilinx field programmable gate array (FPGA). Each 258-bit integer is represented as a polynomial with five, 65 bit signed integer, coefficients . Exploiting this splitting we designed a pipelined 65-bit multiplier base...
متن کامل